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Bound states in the transfer matrix spectrum for general lattice ferromagnetic spin systems
at high temperature

Ricardo S. Schor and Michael O’Carroll*
Departamento de Fı´sica ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

~Received 7 July 1999!

We obtain different properties of generald dimensional lattice ferromagnetic spin systems with nearest
neighbor interactions in the high temperature region (b!1). Each model is characterized by a single sitea
priori spin distribution, taken to be even. We state our results in terms of the parametera5^s4&23^s2&2

where^sk& denotes thekth moment of thea priori distribution. Associated with the model is a lattice quantum
field theory that is known to contain particles. We show that fora.0, b small, there exists a bound state with
mass below the two-particle threshold. Fora,0, bound states do not exist. The existence of the bound state
has implications on the decay of correlations, i.e., the four-point function decays at a slower rate than twice that
of the two-point function. These results are obtained using a lattice version of the Bethe-Salpeter equation in
the ladder approximation. The existence and nonexistence results generalize toN-component models with
rotationally invarianta priori spin distributions.

PACS number~s!: 75.10.Hk, 11.10.St
i
io

m
nd

he
ed
hi
m
ly

io
io
e
-
an

th
ts
if

e
th

n

t
th
te

ing

for

re-
can

li-
-
ral
two-
n

-
be-

e to

of
For
e,

s

I. INTRODUCTION AND RESULTS

In this work we obtain different properties of generald
dimensional lattice ferromagnetic classical spin systems w
nearest neighbor interactions in the high temperature reg
Each such system is characterized by a single sitea priori
spin probability distribution. Associated with these syste
is a lattice quantum field theory with Hamiltonian energy a
field momentum operators living on a~d21)-dimensional
sublattice. The Hamiltonian is minus the logarithm of t
transfer matrix@1,2#. The unusual properties are uncover
by a detailed study of the interaction of the particles of t
underlying field theory. The idea of studying these syste
via the transfer matrix is not new but up until now it has on
been established that the low-lying energy-momentum~EM!
spectrum consists of a particle with an isolated dispers
curve. These results imply exponential decay of correlat
functions ~CF! and the Ornstein-Zernicke behavior of th
two-point CF@3,4#. Our results go beyond giving this infor
mation on the spectrum up to the two-particle threshold
have consequences for the decay of CF’s.

Our basic result can be stated in terms of the sign of
quantity a[^s4&23^s2&2, where the brackets are momen
of thea priori distribution, taken to be even. We show that
a.0, the dominate interaction~which is local! is attractive
and a bound state exists such as when there is an en
spectrum below the two-particle threshold. The mass of
bound state, denoted bymb, is given by mb52m 1
ln(1-g)10(b), whereg5a/(212^s2&2) so that 0,g,1.
For a,0, the interaction is repulsive and there are no bou
states. In the Gaussian case that corresponds toa50, the
particles do not interact. The presence of bound states in
spectrum implies decay properties of CF’s; for example,
four-point function has a slower than two-particle decay ra

The spectral results established here are obtained us
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lattice version of the Bethe-Salpeter~BS! equation~which
employs a differently devised set of coordinates suitable
the lattice two-body bound state problem! in the ladder ap-
proximation. This approximation has proved to be quite
liable in cases where a complete mathematical treatment
be carried out@5,6#.

We point out that for a wide class of models, CF inequa
ties have been established in@1,7#, called Gaussian domina
tion inequalities. The correlation inequalities imply spect
results, namely, the absence of bound states below the
particle threshold. For smallb, these results are included i
our analysis since these models correspond toa,0. In ad-
dition, our bound state results generalize toN-component
spin models~see below!, while Gaussian domination in
equalities have only proved to hold for the scalar and A
lian (N52) cases.

Our results on the existence of bound states generaliz
N-component spin models wheresi(x) is the i th component
of s(x)PRN. The single spin distribution~SSD! is taken to
be even and rotationally invariant.a, the parameter for the
scalar spin case, is replaced by

aN5^~s•s!2&2
N12

N
^s•s&2,

and bound states exist foraN.0 and are excluded foraN
,0. aN50 corresponds to the Gaussian case.

We now turn to a more precise description of the class
models we treat and show how our results are obtained.
simplicity, we only consider explicitly the scalar spin cas
but at the end we give the generalization to theN-component
case. We lets(x)PR, x5(xo ,xW )PZd denote the spin vari-
able at the lattice sitex. Formally, the generating function i
Z(J)5*e(J,s)eS(s)dm(s), where (J,s)5(xJ(x)s(x) and the
interacting action is, withb.0 and small,

S~s!5
b

2 (
ux2yu51

s~x!s~y!.
1521 ©2000 The American Physical Society
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1522 PRE 62RICARDO S. SCHOR AND MICHAEL O’CARROLL
dm(s) is a product of single spin distribution; i.e.,dm(s)
5Pxe

2V„s(x)…ds(x). We only consider the case of eve
SSD; i.e.,V(s)5V(2s). V(s) is bounded from below and
increases at infinity at least quadratically. Expectations of
probability measureeS(s)dm(s)/normalization are denote
by ^ &. Truncated CF’s are given by derivatives with resp
to J of ln Z(J) at J50. The above is formal and we actual
start with the system on a finite lattice. Then for sufficien
small b the thermodynamic limit as well as exponential tr
decay of the truncated CF’s is established using the poly
expansion@1,4#.

We now describe the organization of the paper. In Sec
we introduce the associated lattice quantum field the
~QFT! and give the Feynman-Kac~FK! formula that relates
the CF of the spin system to the vacuum expectation va
of the QFT. In particular, a spectral representation of a p
tially truncated four-point function is obtained, which is th
object of our analysis for the detection of bound states. T
BS equation for the four-point function is introduced in Se
III and using it we obtain our results. The generalization
N-component vector models is given in Sec. IV. We ma
some concluding remarks in Sec. V.

II. FEYNMAN-KAC FORMULA

In this section we introduce the associated lattice quan
field theory and establish a FK formula. Taking the infin
lattice limit in the xo direction ~called time!, the associated
lattice quantum field theory can be constructed in a stand
way @1,2#. The construction provides the quantum mecha
cal Hilbert spaceH with inner product~ , !, commuting self-
adjoint energy-momentum operatorsH>0, PW , the time zero
field operatorŝ(xW ), x5(0,x), and the vacuum vectorV. The
relation of the Hilbert space objects to the CF’s is given
the Feynman-Kac formula, denotingŝ(0)5 ŝ, xk5(tk ,xY k),
and for t1<t2<•••<tn ,

@V, f 1~ ŝ!e2H~ t22t1!eiPY ~ x̄12 x̄2! f 2~ ŝ!e2H~ t32t2!

3eiPY ~ x̄22 x̄3!••• f n~ ŝ!V#5^ f 1„s~x1!…...f n„s~xn!…&,

where f i are functions of the time zero spin configuration
We now state some known results on the spectrum

we need here. The one-particle states are generated by
tors of the formŝ(xY )V and by the methods of@4#, have mass
m;2 ln b for b small, and have an isolated real analy
dispersion curvew(pY )>w(0)[m. The EM dispersion curve

is determined as the zero ofG̃„po5 iw(pW ),pW …, whereG̃(p) is
the Fourier transform ofG(x,y). G(x,y) is minus the con-
volution inverse of the two-point function̂ s(x)s(y)&
5S(x,y). To lowest order inb,

w~pY !52 ln b2 ln^s2&22b^s2&1b^s2&2(
i .1

d21

~12cospi !.

Furthermore, there is no EM spectrum up to2(22«)ln b,
«(b).0, and«(b)↓0 asb↓0. This is known as the uppe
mass gap property, and the Orstein-Zernicke behavior of
two-point function is a consequence@3#. The general repre
e

t

er

II
y

es
r-

e
.

e

m

rd
i-

y

at
ec-

e

sentation forS̃(p), the Fourier transform ofS, can be ob-
tained by adapting the work of@2,4# to show that

S̃~po,pW !5
sinhw~pW !Z~pW !~2p!d21

coshw~pW !2cospo
1E

coshm̄

` dh~a,pW !

a2cospo
,

where m̄52(32«8)ln b, «8.0, dh is a positive measure
andZ(p), w(pW ) are real analytic inp; m̄ is a lower bound for
the onset of the three-particle spectrum.

To determine the mass spectrum~EM spectrum atpW 50)
in the interval (m,2m), we consider the states in the su
space generated byŝ(xY ) ŝ(yY )V. The truncated four-point
function related to this state~after subtracting out the
vacuum contribution! is

D~x1x2 ;x3x4!5^s~x1!s~x2!s~x3!s~x4!&

2^s~x1!s~x2!&^s~x3!s~x4!&,

wherexi5(t i ,xY i). By translation, invarianceD depends only
on the difference variables. We now introduce the new
devised relative coordinates~j,h,t!, which are the substitute
for the center of mass and relative coordinates used in
continuum@8#. Let j5x22x1 , h5x42x3 , t5x32x2 , and
let us denote byp, q, kthe respective Fourier transform var
ables. Writing j5(jo ,j), etc., it follows that if jo5ho

50, D(j,h,t)5@u(2j),e2HutueipY •tYu(hY )#, where u(hY )
5 ŝ(oY ) ŝ(hY )V2@V,ŝ(oY ) ŝ(hY )V#V. A calculation shows,
with f :Zd→C, a function of space position only, and lettin
f̃ (pY ) andD̃(p,q,k) denote the Fourier transform off andD,

E ddpddq fD ~pW ! f̃ ~qY !D~p,q,k!

5E
0

`E
Td21

sinhE

coshE2cosko
~2p!3d12

3d~qY 2kY !d@u~ f !,E~E,qY !u~ f !#,

whereE(E,qY ) is the spectral family associated withH, PW and
Td21 is thed one-dimensional torus,

u~ f !5(
xY

f ~xY !u~2xY !, xYPZd21.

The singularities inko , for kY fixed, of the left side, are points
in the EM spectrum that result from considering the rig
side.

III. BETHE-SALPETER EQUATION

To determine these singularities below the two-parti
threshold, we now consider the BS equation, which in ope
tor form is D5Do1DoKD, and in terms of kernels is

D~x1x2 ;x3x4!5Do~x1x2 ;x3x4!

1E dy1dy2dy3dy4•Do~x1x2 ;y1y2!

3K~y1y2 ;y3y4!D~y3 ,y4 ;x3x4!,
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Do~x1x2 ;x3x4!5^s~x1!s~x2!&^s~x3!s~x4!&

1^s~x1!s~x3!&^s~x2!s~x4!&,

where we use an integral notation for sums over latt
points.K is called the kernel of the BS equation. Using t
x1↔x2 and x3↔x4 symmetry properties ofD and Do and
thus also ofK, the Fourier transform of the BS equation c
be written in the convolution form

D̃~p,q,k!5D̃o~p,p8,k!

1E D̃o~p,q8,k!K̃~p8,q8,k!D̃~q8,q,k!dp8dq8,

or in the operator formD̃5D̃o1D̃oK̃D̃, where the action of
an operatorM̃ (p,q,k) on a functionf̃ is given by

M̃ f̃ ~p!5E M̃ ~p,q,k! f̃ ~q!dq.

As

D̃o~p,q,k!5S̃~p!S̃~q!d~2k1p1q!

1S̃~p!S̃~k2p!d~2q1p!,

the action ofD̃o(ko)[D̃o @k5(ko ,kY50)#, etc., on functions
depending only onpY is D̃o(ko) f̃ (p)5(2p)d11S̃(p)S̃(k
2p)@ f (pY )1 f (2pY )#, where

S̃~p!5(
x

e2 ipx^s~0!s~x!&.

Now we can writeD̃5D̃o(12K̃D̃o)21 in the form, for
f (pY )5 f (2pY ),

@ f ,D̃~ko! f #52E ddp f̃~pY !G~pY ,ko!g̃~pY ,ko!,

where

G~qY ,ko!5E dqoS̃~q!S̃~ko2qo ,qY !

and

g̃~•,ko!5@12~2p!22~d11!K̃~ko!D̃~ko!#21 f̃ .

As G(qY ,ko) is analytic inuIm kou,2m, the only singularities
in uIm kou,2m come fromg(•,ko) which in turn come from
Im ko where the inverse of 12(2p)22(d11)K̃(ko)D̃(ko) does
not exist.

Our approximation~called the ladder approximation! re-
placesK̃(ko) by L̃(ko), the leading term in an expansion
b for K̃(ko), which turns out to be local in space time an
independent ofb. We obtain

L̃~p,q,k!5
1

2s^s2&2 F ^s4&23^s2&2

^s4&2^s2&2 G[ g

2^s2&25p ,

and in this approximation@ f ,D̃(ko) f # can be written as
e

„f ,D̃~ko! f …5E fD ~pY !D̃0~p,ko! f ~pY !dp

1
r

12rI S E fD ~pY !D̃o~p,ko!dpD
3S E D̃o~p8,ko! f ~pY 8!dp8 D ,

where

D̃o~p,k![2S̃~p!S̃~ko2po ,2 p̃! and I[E D̃o~p,ko!dp.

Thus we have a bound state forrI 51. Using the represen
tation for S̃(po ,pY ), we can explicitly perform thepo integra-
tion in I. Only the product of the one-particle terms can gi
rise to a singularity inX as X↑2m, where we setko
5( ix,k50). The other terms are analytic inl up to at least
2(42«8)ln b. Keeping only these terms, denoting the res
by I 1 , we obtain, writingX5zm2«,

I 152~2p!d21E ~12e24w!Z~pW !2dpW

~12e2~m2w!2e2«22m22w1«1e24w!
.0

For b50, usingZ(pW )5^s2&/(2p)d2110(B),

I 15
2^s2&2

l 2e2«

Thus, for a.0 there is a bound state forg(12e2«b)51,
with mass mb'2m2«b52m1 ln(12g). Note that for a
Gaussian SSD the numerator ofr is zero: the denominator is
>0 by the Cauchy-Schwarz inequality. The Gaussian do
nation inequality of@3,6# implies ^s4&<3^s2&2, which im-
plies the absence of bound states. In this case,r<0. Our
analysis does not apply to the Ising case due to the zer
the denominator ofco . Nevertheless, Gaussian dominatio
inequalities hold for the Ising model and exclude bou
states from the spectrum.

IV. N-COMPONENT VECTOR MODEL

We now considerN-component vector models with eve
rotationally invariant@O(N)# SSD. The spin variable at sit
xPZd is denoted bys(x)PRN with componentssi(x)PR,
i 51,2, . . . ,N and the time zero operators are denoted
ŝ(xW ),xWPZd21. The one-particle states are generated by v
tors of the form

ŝk~xW !V.

The two-particle states are generated by

ŝk~xW !ŝl ~yW !V,

and these states can be decomposed into the rotationall
variant state

ŝ~xW !• ŝ~y!V

and the traceless states
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S ŝk~xW !ŝl ~yW !2
1

N
ŝ~xW !• ŝ~yW ! D dkl .

The traceless states can further be decomposed into the
metric and antisymmetric states

S ŝk~xW !ŝl ~yW !1 ŝl ~xW !ŝk~yW !2
2

N
ŝ~xW !• ŝ~yW ! DV

and

@Ŝk~xW !Ŝl ~yW !2Ŝl ~xW !Ŝk~yW !#V,

respectively.
We only consider the rotationally invariant state. Asso

ated with this state~after subtracting out the vaccuum co
tribution! is the CF

D~x1x2x3x4!5^s~x1!•s~x2!s~x3!•s~x4!&

2^s~x1!•s~x2!&^s~x3!•s~x4!&

and the FK formula and spectral repetition equation rem
valid. In the BS equationD5Do1DoKD, we take

Do~x1x2x3x4!5^s~x1!•s~x3!&^s~x2!•~x4!&

1^s~x1!•s~x4!&^s~x2!•s~x3!&.

As before,D andDo are decomposed into the diagonal a
nondiagonal parts, the diagonal parts being of the orderb.

We find

Dd~x1x2x3x4!

5N@^sl
4&2N^sl

2&1~N21!^sl
2s2

2&#d~x32x1!

3d~x42x2!d~x22x1!1N^s1
2&2d~x32x1!

3d~x42x2!@12d~x22x1!#10~b!,

Dod~x1x2x3x4!

52N^S1
2&2d~x32x1!d~x42x2!d~x22x1!

1N^S1
2&2d~x32x1!d~x42x2!@12d~x22x1!#

10~b!,

and forK5Dod
212Dd

21

K5Dod
212Dd

2110~b!

5
1

N F ^s1
4&2N^s1

2&1~N21!^s1
2s2

2&22^s1
2&2

2^s1
2&2~^s1

4&2N^s1
2&2!1~N21!^s1

2s2
2&2G

3d~x32x1!d~x42x2!d~x22x1!10~b!.

Dropping the 0~b! terms, rewriting in terms ofs, and taking
the Fourier transform gives

L̃~pW ,qW ,k!5aN ,

whereaN is given in the Introduction. The rest of the anal
sis goes through as in the preceding section.
m-

-

in

V. CONCLUDING REMARKS

We have found a simple criterion for the existence
bound states based on the sign ofa. The question arises as t
the existence and number of bound states for large value
b in any dimension. Also, there is the question of whether
not the result generalizes to the case of noneven SSC.
example, ifa is calculated using zero average fields, does
sign a still determine the presence or absence of bou
states? The existence of weakly bound, bound states in
tice gauge and gauge-matter models~strongly bound, bound
states are present! is also an open question.

APPENDIX: LATTICE BS EQUATION

Here we deduce a composition of kernel form for t
Fourier transform of the lattice BS equation. We use
relative and conjugate variables

j5x22x1 , p, h5x42x3 , q, t5x32x2 , k,

and use an integral notation for lattice sums. The BS eq
tion is

D~x1x2x3x4!5Do~x1x2x3x4!

1E dy1dy2dy3dy4D~x1x2y1y2!

3K~y1y2y3y4!Do~y3y4x3x4!. ~A1!

All kernels are assumed to be translationally invariant.
terms of the relative variablesj,h,t we write, using a bar
notation for the function of the relative variables, i.e.,

D̄~j,h,t!5D~0,x22x15j,x32x15j1t,x4

2x15j1h1t!,

etc. The kernelsD1Do and, consequently,k, are invariant
under the substitutions

~x1x2x3x4!→~x2x1x3x4!, ~A2a!

~x1x2x3x4!→~x1x2x4x3!, ~A2b!

which imply

K̄~j,h,t!5K̄~2j,h,t1j!, ~A3a!

K̄~j,h,t!5K̄~j,2h,t1h!. ~A3b!

We introduce the variablesj8,h8,t8, t9, where

j85y22y1 , ~A4a!

h85y42y3 , ~A4b!

t85y12x2 , ~A4c!

t95x32y4 . ~A4d!

Then

y15t81x2 , ~A5a!
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y25j81y15j81t81x2 , ~A5b!

y45x32t9, ~A5c!

y35y42h85x32t-2h8. ~A5d!

We have

D~x1x2y1y2!5D̄~j,j8,t8!, ~A6a!

D0~y3y4x3x4!5D̄0~h8,h,t9!, ~A6b!

K̄~y1y2y3y4!5K̄~j8,h8,t2t82t92j82h8!

5K̄~2j8,2h8,t2t82t9!, ~A6c!

where for the first equality of Eq.~A6c! we use Eq.~A5!, i.e.,

y32y25~x32t92h8!2~j81t81x2!

5t2t82t92j82h8,
and for the second we use Eq.~A3!.
Thus the BS equation becomes

D̄~j,h,t!5D̄0~j,h,t!1E dj8dh8dt8dt9D̄~j,j8,t8!,

K̄~2j8,2h8,t2t82t9!D̄0~h8,h,t9!. ~A7!

The way that the variables enter in Eq.~A7! is important, as
taking the Fourier transform of Eq.~A7! with the conjugate
variablesp,q,kand dropping the bar gives the desired form

D̃~p,q,k!5D̃0~p,q,k!2
1

~2p!2d

3E dp8dq8D̃~p,p8,k!K~p8,q8,k!D̃0~q8,q,k!.

~A8!
.
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