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Bound states in the transfer matrix spectrum for general lattice ferromagnetic spin systems
at high temperature
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We obtain different properties of generdldimensional lattice ferromagnetic spin systems with nearest
neighbor interactions in the high temperature regigr<(l). Each model is characterized by a single site
priori spin distribution, taken to be even. We state our results in terms of the paramvetef’) —3(s?)2
where(s*) denotes théth moment of thea priori distribution. Associated with the model is a lattice quantum
field theory that is known to contain particles. We show thatdforO, 8 small, there exists a bound state with
mass below the two-particle threshold. ko0, bound states do not exist. The existence of the bound state
has implications on the decay of correlations, i.e., the four-point function decays at a slower rate than twice that
of the two-point function. These results are obtained using a lattice version of the Bethe-Salpeter equation in
the ladder approximation. The existence and nonexistence results generahzeotoponent models with
rotationally invarianta priori spin distributions.

PACS numbgs): 75.10.Hk, 11.10.St

I. INTRODUCTION AND RESULTS lattice version of the Bethe-Salpeté8S) equation(which

. - . employs a differently devised set of coordinates suitable for

di n th.'s wlolrk we fobtam d|ffer.ent|proper|t|es: of genechl __the lattice two-body bound state problgm the ladder ap-
imensional lattice ferromagnetic classical spin systems W'ﬂri\‘)roximation. This approximation has proved to be quite re-

nearest neighbor interactions in the high temperature regiolapje in cases where a complete mathematical treatment can
Each such system is characterized by a single asiggiori be carried ouf5,6].

spin probability distribution. Associated with these systems e point out that for a wide class of models, CF inequali-
is a lattice quantum field theory with Hamiltonian energy andtjes have been established[ih 7], called Gaussian domina-
field momentum operators living on @—1)-dimensional  tjon inequalities. The correlation inequalities imply spectral
sublattice. The Hamiltonian is minus the logarithm of theresults, namely, the absence of bound states below the two-
transfer matrix1,2]. The unusual properties are uncoveredparticle threshold. For sma@, these results are included in
by a detailed study of the interaction of the particles of thisour analysis since these models correspond 0. In ad-
underlying field theory. The idea of studying these systemslition, our bound state results generalize Necomponent

via the transfer matrix is not new but up until now it has only spin models(see beloy; while Gaussian domination in-
been established that the low-lying energy-momentii)  equalities have only proved to hold for the scalar and Abe-
spectrum consists of a particle with an isolated dispersiofian (N=2) cases.

curve. These results imply exponential decay of correlation Our results on the existence of bound states generalize to
functions (CF) and the Ornstein-Zernicke behavior of the N-component spin models whesgx) is theith component
two-point CF[3,4]. Our results go beyond giving this infor- Of S(x) e RN. The single spin distributiofSSD) is taken to
mation on the spectrum up to the two-particle threshold and€ €ven and rotationally invariant, the parameter for the

have consequences for the decay of CF’s. scalar spin case, is replaced by
Our basic result can be stated in terms of the sign of the N2
i — /4 2\2
quantity e=(s")—3(s*)*, where the brackets are moments an=((s-5)2)— N (s-5)2,

of thea priori distribution, taken to be even. We show that if
a>0, the dominate interactiofwhich is loca) is attractive )
and a bound state exists such as when there is an energd bound states exist fary>0 and are excluded fosy

spectrum below the two-particle threshold. The mass of the~0. an=0 corresponds to the Gaussian case.
bound state, denoted byn,, is given by m,=2m + We now turn to a more precise description of the class of

In(1-7)+0(B), where y=a/(2+2(s?)?) so that G<y<1. models we treat and show how our results are obtained. For
implicity, we only consider explicitly the scalar spin case,

For «<0, the interaction is repulsive and there are no boun . 0
“ P ut at the end we give the generalization to lkeomponent

states. In the Gaussian case that corresponds=t0, the We lek R x— ) < 7¢ denote th . .

particles do not interact. The presence of bound states in th se. e le (?() e X=(Xo,X) € enote the spin var-

spectrum implies decay properties of CF's; for example thé le at the lattice site. Formally, the generating function is
: - - ' Z2(3)=Jel9eS9d(s), where (,s)=3,J(x)s(x) and the

four-point function has a slower than two-particle decay rate; . L ! d ﬁ

The spectral results established here are obtained using®€racting action is, with3=>0 and small,

S(s)= ;X%_l s(X)s(y).
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du(s) is a product of single spin distribution; i.edu(s)  sentation forS(p), the Fourier transform o8, can be ob-

=11, Vds(x). We only consider the case of even tained by adapting the work ¢2,4] to show that
SSD; i.e.,V(s)=V(—s). V(s) is bounded from below and

increases at infinity at least quadratically. Expectations of the Sinhw(ﬁ)z(ﬁ)(zﬂ_)d—l fw d7(a,p)

probability measuree®du(s)/normalization are denoted S(po,P) =

by (). Truncated CF's are given by derivatives with respect

to J of ]n Z(J) atJ=0. The appve is.formal and we agtt_JaIIy wheref=—(3—¢")In B, &' >0, d7 is a positive measure

start with the system on a finite lattice. Then for sufficiently - R

small 8 the thermodynamic limit as well as exponential tree21dZ(P), w(p) are real analytic ip; m is a lower bound for

decay of the truncated CF's is established using the polymdf€ Onset of the three-particle spectrum. )

expansior[1,4]. ~ To determine the mass spect_rulEM spectrum ap=0)
We now describe the organization of the paper. In Sec. |in the interval (n,2m), we consider the states in the sub-

we introduce the associated lattice quantum field theorpPace generated b§(X)5(y){2. The truncated four-point

the CF of the spin system to the vacuum expectation value¥acuum contributionis

of the QFT. In particular, a spectral representation of a par-

tially truncated four-point function is obtained, which is the D (X1X2;%3%4) = (S(X1)S(X2)8(X3)S(X4))

object of our analysis for the detection of bound states. The —(S(X1)8(X2) ){(S(X3)S(X4)),

BS equation for the four-point function is introduced in Sec.

Il and using it we obtain our.resylts. The generalization tOWhereXi:(ti !)_(‘i)' By trans|ation, invariancB depends 0n|y
N-component vector models is given in Sec. IV. We makegn the difference variables. We now introduce the newly

coshw(p) —cosp, coshm @—COSP,’

some concluding remarks in Sec. V. devised relative coordinatég, »,7), which are the substitute
for the center of mass and relative coordinates used in the
Il. FEYNMAN-KAC FORMULA continuum[8]. Let {=X,—X;, 7=X4—X3, T=X3—Xp, and

. . ) ) ] let us denote by, g, kthe respective Fourier transform vari-
In this section we introduce the associated lattice quantumples. Writing ¢é=(&,,£), etc., it follows that if &= 7,

field theory and establish a FK formula. Taking the infinite _ D(&,7,7)=[6(— &) efH|r|eip-?0( 7)1, where 6(7)
lattice limit in the x, direction (called timé, the associated :g(’ﬁ)g( ;7')9’_[9 §(6)§(,77)Q]Q. A calculation shows
lattice quantum field theory can be constructed in a standargd;, - 74 c 4 fL;nction of space position only, and Iettir,19

way [1,2]. The construction provides the quantum mechani-, _ ~ .
cal Hilbert spacé+ with inner product ,), commuting self- f(p) andD(p,q,k) denote the Fourier transform dandD,

adjoint energy-momentum operatdtis=0, P, the time zero

field operatoi(x), x=(0,X), and the vacuum vect@. The f d’pd®af(F)T(G)D(p.a.k)
relation of the Hilbert space objects to the CF’s is given by _
the Feynman-Kac formula, denotirgf0)=35, x,= (t\,Xy), :J”’J sinhE 2m)3+2
and fort;<t,<---<t,, o J14_, COShE—cosk, m
[Q,f,(8)e Hlte telPHL-X2)f (§)e Hlta~t2) X 8(G—k)d[ 6(f ),EE,G)0(f)],
w elP(a—x3). .. fr(8)Q]=(f1(s(X1))...fn(s(Xn))), where&(E,§) is the spectral family associated with P and

T9-1 is thed one-dimensional torus,

wheref; are functions of the time zero spin configurations.
We now state some known results on the spectrum that o(f)=> f(X)6(—%), Kez9 1.
we need here. The one-particle states are generated by vec- <
tors of the form§(x) Q2 and by the methods ¢#], have mass R
m~ —In B for B small, and have an isolated real analytic The singularities irk, , for k fixed, of the left side, are points
dispersion curvev(p)=w(0)=m. The EM dispersion curve in the EM spectrum that result from considering the right

is determined as the zero Bip,=iw(p), ), wherel'(p) is  Side.
the Fourier transform of (x,y). I'(x,y) is minus the con-
volution inverse of the two-point functions(x)s(y)) lIl. BETHE-SALPETER EQUATION

=S(x,y). To lowest order ing, To determine these singularities below the two-particle

threshold, we now consider the BS equation, which in opera-
tor form isD=D,+D,KD, and in terms of kernels is

d-1
w(p)=—InB—In(s’) —28(s*) + B(s*)2 2, (1—cosp)).
=1
D(X1X2;X3X4) = Do(X1X2;X3X4)
Furthermore, there is no EM spectrum up+d2—e¢)In g,
e(B)>0, ande(B)|0 asB|0. This is known as the upper +f dy1dyody3dys - Do(X1X2;Y1Y2)

mass gap property, and the Orstein-Zernicke behavior of the
two-point function is a consequeng®]. The general repre- XK(Y1Y2;Y3Ya)D(Y3,Ya;X3Xa),
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D o(X1X2;X3X4) =(S(X1)S(X2) )(S(X3)S(X4))
+(S(X1)8(X3) ){(S(X2)S(X4)),

where we use an integral notation for sums over lattice + P (f f:(ﬁ)ﬁo(p,ko)dp)
points.K is called the kernel of the BS equation. Using the 1-pl

X1X, and Xz X, symmetry properties ob and D, and _

thus also ofK, the Fourier transform of the BS equation can X( f Do(p’, ko) f(p’)d p’),
be written in the convolution form

(f,b(ko)f>=f F(5)Do(p.ko) F(p)dp

- - . where
D(p.,q.k)=Dy(p.p" k)

~ s = L Do(p.k)=23(p)S(ko—Po,— P and|zf’f> ko)dp.
_,’_J’ Do(p,q ,k)K(p ,q ,k)D(q ,q,k)dp dq , O(p ) (p)s( 0 pO p) O(p O) p
Thus we have a bound state fer=1. Using the represen-
tation forS(p, ,p), we can explicitly perform the, integra-
tion in 1. Only the product of the one-particle terms can give
rise to a singularity inX as X72m, where we setk,

or in the operator fornD=D,+D,KD, where the action of
an operatoiM (p,q,k) on a functionf is given by

l\7IT(p)=f M(p,q.k)f(g)dag. =(ix,k=0). The other terms are analytic \nup to at least
—(4—¢")In B. Keeping only these terms, denoting the result
As by I, we obtain, writingX=zm—¢,
~ ~ ~ A~ 4w 24
Do(p.q.k)=S(p)S(q)8( ~k+p+a) , :Z(ZW)HI (1—e "z(pydp —0
1 (1— M- W—e_g—2m-2wiey o4w)

+3(p)S(k—p)8(—q+p),

» B < For B=0, usingZ(p)=(s*)/(2m)* *+0(B),
the action ofD,(k,)=D, [k=(k,,k=0)], etc., on functions or f=0, usingZ(p)=(s"/(2m) (B)

depending only onp is D,(k,)f(p)=(27)%"*S(p)S(k _2(s?)?

~p)[f(p)+F(~P)], where e
)= e PX(s(0)s(x)). Thus, fora>0 there is a bound state for(1—e °b)=1,
S(P) g (s(0)s(x)) with massmp~2m—g,=2m+In(1—7y). Note that for a

o e Gaussian SSD the numeratormfs zero: the denominator is
Now we can writeD=D,(1—KD,) ! in the form, for =0 by the Cauchy-Schwarz inequality. The Gaussian domi-
f(p)="1(—p), nation inequality of[3,6] implies (s*)<3(s?)?, which im-
plies the absence of bound states. In this case0. Our
= _ d,. %= S e analysis does not apply to the Ising case due to the zero in
[f’D(kO)f]_ZJ dpTPIG(P.ko)T(P:ko). the denominator ot,. Nevertheless, Gaussian domination
inequalities hold for the Ising model and exclude bound

where states from the spectrum.

G(q,ko)=f dgoS(q)S(ko— 05, G) IV. N-COMPONENT VECTOR MODEL

We now consideN-component vector models with even
rotationally invarian{ O(N)] SSD. The spin variable at site
xe Z% is denoted bys(x) e RN with componentss;(x) € R,
i=1,2,...N and the time zero operators are denoted by
3(X),Xe 29", The one-particle states are generated by vec-
tors of the form

and
T(- ko) =[1—(2m) 24" VK (ko) D (ko)1 ™.

As G(q,k,) is analytic in|Im k,|<2m, the only singularities
in |Im ky|<2m come fromg(-,k,) which in turn come from
Im k, where the inverse of 4 (277) ~2@+ YK (k,) D (k,) does 8(%)Q.
not exist.
Our approximation(called the ladder approximatipme-  The two-particle states are generated by
placesK (k,) by L(k,), the leading term in an expansion in o
S(X)5(Y)42,

B for K(k,), which turns out to be local in space time and
independent of3. We obtain and these states can be decomposed into the rotationally in-
variant state

(s)—3(s?)?
(sH)—(s%)?

and in this approximatiopf,D(k,)f] can be written as and the traceless states

— y J—
22 P 3(%)-3(y)Q

~ 1
L(p,q,k)= 25<52>2
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( 1 ) V. CONCLUDING REMARKS
§(X)8,(Y) — =5(X)-5(Y) | O, - . o .
dRISAY) N (X)-3(Y) | o We have found a simple criterion for the existence of

] bound states based on the sigmofThe question arises as to
The traceless states can further be decomposed into the Sy existence and number of bound states for large values of

metric and antisymmetric states Bin any dimension. Also, there is the question of whether or
5 not the result generalizes to the case of noneven SSC. For

803, () +8(R)8(Y) — —3(X)- Q(V))Q e_xample,.|fa is calcylated using zero average fields, does the

N sign « still determine the presence or absence of bound

states? The existence of weakly bound, bound states in lat-
and tice gauge and gauge-matter mod@songly bound, bound
. . . . states are presens also an open question.
[S(X)SAY) = SAX)S(Y) 1€,

respectively.
We only consider the rotationally invariant state. Associ- Here we deduce a composition of kernel form for the
ated with this statdafter subtracting out the vaccuum con- Fourier transform of the lattice BS equation. We use the

APPENDIX: LATTICE BS EQUATION

tribution) is the CF relative and conjugate variables
D (X1X2X3X4) = (S(X1) - S(X2)S(X3) - S(X4)) E=Xo=X1, P, 7=Xs—X3, O, T=Xz—Xz, K,
—(S(X1) - S(X2) }(S(X3) - S(Xa)) and use an integral notation for lattice sums. The BS equa-
- . _tion is
and the FK formula and spectral repetition equation remain
valid. In the BS equatio® =D,+D,KD, we take D (X1XpX3X4) = D o(X1X2X3X4)

D o(X1XoX3Xg) =(S(X1) - S(X3)){S(X2) - (X4))
+(S(X1) - S(X4) )(S(X2) - S(X3)).

As before,D andD, are decomposed into the diagonal and
nondiagonal parts, the diagonal parts being of the ofler  All kernels are assumed to be translationally invariant. In
We find terms of the relative variable§»,= we write, using a bar
notation for the function of the relative variables, i.e.,

+ j dy,dy,dys;dysD(X1X2Y1Y2)

XK(Y1Y2Y3Ya)Do(Y3yaXsXs).  (Al)

D 4(X1X2X3X4)

= N[(sf) = N(sD)+ (N = 1)(s753)]8(xa=x,) D(&,7.7)=D(0X— X = £ X, = £+ 7k

X 8(X4—X2) 8(Xy—X1) + N(ST)?8(X3—X1) X =&t ),

X 8(Xg—Xo)[ 1= 8(Xp—X1)]+0(B), etc. The kerneldD D, and, consequentlyk, are invariant

under the substitutions

Doa(X1X2X3X4) (X1XoXaXq) — (XoX1X3X4), (A2a)
_ 2\2 _ _ _
=2N(S7)“8(X3—X1) 8(X4— X2) 8(X3—X1) (X XoXaXa)— (XXpXaXa). (A2b)
FN(SD 2006 x) S X L= B0 —x)] mply
+0(B), _ _
d forK D_l D_l K(gin!T):K(_glﬂaT—'_g)v (A3a)
and forK=D4—Dy
K(&n,7)=K(&= 5,7+ 7). (A3Db)

K=Dog—Dg'+0(B)

We introduce the variable&,n',7, 7/, where
L[ (s~ N(2)+ (N— 1)(s52) — 2(2)? e

T N[ 2(D2((sH—N(D)2) + (N—1)(s2s2)2 £'=y,-y1, (A4a)
X 8(X3—X1) 6(X4—Xz) 8(Xa—X1) +0(B). 7' =Ya—Ys, (Adb)
Dropping the QB) terms, rewriting in terms of, and taking =Y~ X, (A4c)

the Fourier transform gives
-~ .. 7'=X3—VYa4. (A4d)
L(p.6.K)=an,
Then
whereay is given in the Introduction. The rest of the analy-
sis goes through as in the preceding section. yi=7 +Xp, (A5a)
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Yo=&+y, =&+ 7 +Xx,, (A5b)
Ya=X3— 7", (A5c)
Y3=Ya— ' =Xz—7"— 7. (A5d)
We have
D(X:1Xzy1Y2) =D(£&,€",7"), (A6a)
Do(YayaXsXa) =Do( 7', 7.7, (ABb)

K(YayaYays) =K(&' .0’ 7= 7' = 7" = &' = 7)
=K(—¢',—n',7—7'—7),  (A60)
where for the first equality of EqA6c) we use Eq(A5), i.e.,
Y3—Y2=(Xg— 7" = ') = (&' + 7" +Xyp)
=r—r -7 =¢ -7,

and for the second we use E@?3).
Thus the BS equation becomes

5<§,n,r>=50<§,n,r)+f d¢'dn'dr'dr'D(&,¢,7'),

K(—¢',—n',7—7' —=7)Do(n', 7, 7). (A7)

The way that the variables enter in E&\7) is important, as
taking the Fourier transform of EgA7) with the conjugate
variablesp,q,kand dropping the bar gives the desired form

~ ~ 1
D(p.q.k)=Do(p.a.K) = 57578

Xf dp’dg'D(p,p’,k)K(p’,q’,k)Do(qa’,a,k).
(A8)
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